Spatiotemporal Adaptation in the Corticogeniculate Loop

نویسنده

  • Ulrich Hillenbrand
چکیده

The thalamus is the major gate to the cortex for almost all sensory signals, for input from various subcortical sources such as the cerebellum and the mammillary bodies, and for reentrant cortical information. Thalamic nuclei do not merely relay information to the cortex but perform some operation on it while being modulated by various transmitter systems and in continuous interplay with their cortical target areas. Indeed, cortical feedback to the thalamus is the anatomically dominant input to relay cells even in those thalamic nuclei that are directly driven by sensory systems. While it is well-established that the receptive fields of cortical neurons are strongly influenced by convergent thalamic inputs of different types, the modulation effected by cortical feedback in thalamic response has been difficult to interpret. Experiments and theoretical considerations have pointed to a variety of operations of the visual cortex on the visual thalamus, the lateral geniculate nucleus (LGN), such as control of binocular disparity for stereopsis (Schmielau & Singer, 1977), attention-related gating of relay cells (Sherman & Koch, 1986), gain control of relay cells (Koch, 1987), synchronizing firing of neighboring relay cells (Sillito et al., 1994; Singer, 1994), increasing visual information in relay cells’ output (McClurkin et al., 1994), and switching relay cells from a detection to an analyzing mode (Godwin et al., 1996; Sherman, 1996; Sherman & Guillery, 1996). Nonetheless, the evidence for any particular function is still sparse and rather indirect to date. Clearly, detailed concepts of the interdependency of thalamic and cortical operation could greatly advance our knowledge about complex sensory, and ultimately cognitive, processing. Here we present a novel view on the corticothalamic puzzle by proposing that control of velocity tuning of visual cortical neurons may be an eminent function of corticogeniculate processing. The hypothesis is advanced by studying a model of the primary visual pathway in extensive computer simulations. At the heart of the model is a biophysical account of the electrical membrane properties of thalamic relay neurons (Huguenard & McCormick, 1992; McCormick & Huguenard, 1992) that includes 12 ionic conductances. Among the different effects that corticogeniculate feedback may have on relay cells, we focus on the modulation of their relay mode (between tonic and burst mode) by control of their resting membrane potential. Employing two distinct temporal-response types of geniculate relay neurons (lagged and nonlagged), we find that shifts in membrane potential affect the temporal response properties of relay cells in a way that alters the tuning of cortical cells for speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal adaptation through corticothalamic loops: a hypothesis.

The thalamus is the major gate to the cortex and its control over cortical responses is well established. Cortical feedback to the thalamus is, in turn, the anatomically dominant input to relay cells, yet its influence on thalamic processing has been difficult to interpret. For an understanding of complex sensory processing, detailed concepts of the corticothalamic interplay need yet to be esta...

متن کامل

Completing the corticofugal loop: a visual role for the corticogeniculate type 1 metabotropic glutamate receptor.

The way in which the brain deals with sensory information relies not only on feedforward processing of signals from the periphery but also on feedback inputs. This is the case of the massive projection back from layer 6 in the visual cortex to the thalamus, for which, despite being the greatest single source of synaptic contacts, the functional role still remains unclear. In the cat lateral gen...

متن کامل

Selective elimination of corticogeniculate feedback abolishes the electroencephalogram dependence of primary visual cortical receptive fields and reduces their spatial specificity.

The role of corticogeniculate feedback in the organization, function, and state dependence of visual responses and receptive fields (RFs) is not well understood. We investigated the contribution of the corticogeniculate loop to state-dependent changes of characteristics of the primary visual cortex response by using a novel approach of eliminating corticogeniculate projection neurons with targe...

متن کامل

Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey

Corticothalamic circuits are essential for reciprocal information exchange between the thalamus and cerebral cortex. Nevertheless, the role of corticothalamic circuits in sensory processing remains a mystery. In the visual system, afferents from retina to the lateral geniculate nucleus (LGN) and from LGN to primary visual cortex (V1) are organized into functionally distinct parallel processing ...

متن کامل

Parallel Processing in the Corticogeniculate Pathway of the Macaque Monkey

Although corticothalamic feedback is ubiquitous across species and modalities, its role in sensory processing is unclear. This study provides a detailed description of the visual physiology of corticogeniculate neurons in the primate. Using electrical stimulation to identify corticogeniculate neurons, we distinguish three groups of neurons with response properties that closely resemble those of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001